On Hartshorne's problem for compact C-analytic surfaces M with κ(M)=−∞

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Morse Conjecture for Analytic Flows on Compact Surfaces

The aim of this paper is to prove a Morse conjecture; in particular it is shown that a topologically transitive analytic flow on a compact surface is metrically transitive. We also build smooth topologically transitive flows on surfaces which are not metrically transitive.

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

Morse theory for analytic functions on surfaces

In this paper we deal with analytic functions f : S → R defined on a compact two dimensional Riemannian surface S whose critical points are semi degenerated (critical points having a non identically vanishing Hessian). To any element p of the set of semi degenerated critical points Q we assign an unique index which can take the values −1, 0 or 1, and prove that Q is made up of finitely many (cr...

متن کامل

Sprouts Game on Compact Surfaces

Sprouts is a two-player topological game, invented in 1967 by Michael Paterson and John Conway. The game starts with p spots drawn on a sheet of paper, and lasts at most 3p − 1 moves : the player who makes the last move wins. Sprouts is a very intricate game and the best known manual analysis only achieved to find a winning strategy up to p = 7 spots. Recent computer analysis reached up to p = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 1999

ISSN: 0007-4497

DOI: 10.1016/s0007-4497(99)00119-0